Holomorphic Functions on Strict Inductive Limjis of Banach Spaces

نویسنده

  • SEAN DINEEN
چکیده

In this article we show that a number of apparently different properties coincide on tite set of holomorpitic functions on a strict inductive limit (aH inductive limits are asgumed to be countable and proper) of Banach spaces and that they are ¿II satisfied only ‘u tite trivial case of a strict inductive limit of finite dimensional spaces. Thus tite linear properties of a strict inductive Iimit of Banach spaces rarely transiate themselVCS into itolomorphic properties.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

A special subspace of weighted spaces of holomorphic functions on the upper half plane

In this paper, we intend to define and study concepts of weight and weighted spaces of holomorphic (analytic) functions on the upper half plane. We study two special classes of these spaces of holomorphic functions on the upper half plane. Firstly, we prove these spaces of holomorphic functions on the upper half plane endowed with weighted norm supremum are Banach spaces. Then, we investigate t...

متن کامل

Composition operators between growth spaces‎ ‎on circular and strictly convex domains in complex Banach spaces‎

‎Let $\Omega_X$ be a bounded‎, ‎circular and strictly convex domain in a complex Banach space $X$‎, ‎and $\mathcal{H}(\Omega_X)$ be the space of all holomorphic functions from $\Omega_X$ to $\mathbb{C}$‎. ‎The growth space $\mathcal{A}^\nu(\Omega_X)$ consists of all $f\in\mathcal{H}(\Omega_X)$‎ ‎such that $$|f(x)|\leqslant C \nu(r_{\Omega_X}(x)),\quad x\in \Omega_X,$$‎ ‎for some constant $C>0$‎...

متن کامل

The Subspace Problem for Weighted Inductive Limits of Spaces of Holomorphic Functions

The aim of the present article is to solve in the negative a well-known open problem raised by Bierstedt, Meise and Summers in [BMS1] (see also [BM1]). We construct a countable inductive limit of weighted Banach spaces of holomorphic functions, which is not a topological subspace of the corresponding weighted inductive limit of spaces of continuous functions. As a consequence the topology of th...

متن کامل

A remark on boundedness of composition operators between weighted spaces of holomorphic functions on the upper half-plane

In this paper, we obtain a sucient condition for boundedness of composition operators betweenweighted spaces of holomorphic functions on the upper half-plane whenever our weights are standardanalytic weights, but they don't necessarily satisfy any growth condition.

متن کامل

Vector Spaces of Entire Functions of Unbounded Type

Let E be an infinite dimensional complex Banach space. We prove the existence of an infinitely generated algebra, an infinite dimensional closed subspace and a dense subspace of entire functions on E whose non-zero elements are functions of unbounded type. We also show that the τδ topology on the space of all holomorphic functions cannot be obtained as a countable inductive limit of Fréchet spa...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2014